
www.manaraa.com

A Persistent Programming Language for the Semantic Web

Vadim Eisenberg
Technion

Haifa, Israel
eisenv@cs.technion.ac.il

Yaron Kanza
Technion

Haifa, Israel
kanza@cs.technion.ac.il

ABSTRACT
The impedance mismatch problem that occurs when rela-
tional data is being used by object-oriented (OO) programs,
also occurs when OO programs process RDF data, on the Se-
mantic Web. The impedance mismatch problem is caused by
the differences between RDF and the data model of OO lan-
guages. In this paper, we present a solution to this problem.
Essentially, we modify the OO languages so that RDF re-
sources will become first-class citizens in the OO languages,
and objects of OO languages will become first-class citizens
in RDF. Three important benefits that follow from this mod-
ification are: (1) it becomes natural to use the language as
a persistence programming language, (2) the language sup-
ports implicit integration of data from multiple data sources,
and (3) SPARQL queries and inference can be applied to ob-
jects during the run of a program. We present principles of
languages that support our solution, and we describe an im-
plementation of our approach, by an extension of the Ruby
programming language.

1. INTRODUCTION
The Semantic Web is a collection of technologies for man-

aging linked data on the World-Wide Web [6]. In the Se-
matic Web, data are stored using the RDF data model,
where the data items, called resources, have properties at-
tached to them and can be linked one to another by the
properties forming a graph. Thus, applications in Object-
Oriented (OO) programming languages over the Semantic
Web, need to cope with RDF resources. However, there
are inherent differences between objects of OO program-
ming languages and RDF resources. Essentially, differently
from objects, RDF resources have URIs, properties and can
be members of more than one class. Differently from RDF
resources, objects in OO languages have methods and are
members of single class. These differences cause an impedance
mismatch problem, similar to the impedance mismatch be-
tween OO languages and relational databases.

In this paper we propose a solution to the impedance mis-
match problem. The solution is based on using a unified
data model for both RDF and the OO languages. In the
unified model, (1) resources can have methods, as in OO
programming languages, (2) objects must have URIs and
properties, as in RDF, and (3) an object can be a member
of more than one class. In a programming language over
the unified model, RDF resources become first-class citizens
while all the capabilities of object-oriented programming re-
main.

Since the RDF data model is designed for representing and

storing data on the Web, by considering the objects of an ap-
plication as RDF resources, it becomes natural to store these
objects on the Web. Consequently, a programming language
that uses the unified model is a persistent programming lan-
guage, i.e. any object can be defined as persistent and can
be stored implicitly, without explicit handling of persistence
by the programmer.

In addition, using URIs of the objects in the programming
language enables creating mapping of the URIs to different
data sources. Using this mapping, data integration can be
done implicitly, without specifying in the application logic
which data source each object belongs to.

The Semantic Web includes tools for querying RDF data
(e.g., SPARQL) and for reasoning on the data in RDF -
more information can be inferred from the data stored in
RDF. Thus, by considering the objects of an application
as RDF resources, SPARQL queries and inference can be
applied over these objects.

We have implemented an extension to the Ruby program-
ming language, called Ruby on Semantic Web, that uses the
unified data model. In this paper, we present the princi-
ples that guided the design of the language and describe the
main implementation details. We present code examples of
our extension in the Appendix.

2. BACKGROUND AND FRAMEWORK
In this section, we provide some background. We shortly

survey the main technologies of the Semantic Web, illustrate
the impedance mismatch problem and present the motiva-
tion for persistent programming languages.

2.1 Semantic Web
The vision of the Semantic Web, is to transform the Web

into one global database using URIs and common data mod-
els. A more modest goal is to use the Semantic Web tech-
nologies for Enterprize Information Integration (see [9]) by
creating one global database for an enterprize or a closed
community, in the form of a Corporate Semantic Web [7].
As stated by Agrawal et al. [1]:

A significant long-term goal for our community is
to transition from managing traditional databases
consisting of well-defined schemata for structured
business data, to the much more challenging task
of managing a rich collection of structured, semi-
structured and unstructured data, spread over ma-
ny repositories in the enterprize and on the Web.

Using Semantic Web technologies it is possible to map all
the data to a common representation, in order to create a

www.manaraa.com

global view on all the data in the organization. Moreover, in
the Semantic Web, reasoning tools over ontologies and logic
rules enrich the queries on the integrated data.

2.2 Semantic Web Standards
The main data model of the Semantic Web is RDF [13], in

which all the data is represented by triples subject-predicate-
object, where both the subject and the predicate have to
be URIs. Using URIs provides a way to uniquely identify
resources (objects) in the real world and their properties.
The objects in RDF can be linked by the predicates, thus
constructing a graph of data.

Additional specifications for the Semantic Web include:

• RDFS [12]—a language for specifying classes of the RDF
resources, sub-class relationships between classes and con-
straints on subjects or objects of the predicates.

• OWL [5]—a language for specifying ontologies of RDF.
In OWL, it is possible to specify assertions about objects,
their properties, classes, and relations between them. The
semantics of OWL is based on Description Logic.

• SPARQL [14] and SPARQL/Update [15]—protocols
and query/update languages for RDF. The SPARQL “query
engines” provide their service by SPARQL endpoints. The
endpoints can answer the queries about RDF based either
on the RDF model only, or can apply reasoning using
RDFS, OWL or rule languages.

2.3 The Impedance Mismatch Problem
The object-relational impedance mismatch problem [17]

has been recognized and studied. Evidently, inherent dis-
crepancies exist also between object oriented programming
languages and the data model of the Semantic Web [16].
The main discrepancies are:

• Multiple vs. Single class membership. In OO, every
object is a member of a single class. In the Semantic
Web, an individual (the object in Semantic Web) may be
a member of multiple classes.

• Dynamic class membership. In OO, objects cannot
change their class. In the Semantic Web, individuals can
change their classes dynamically.

The following example illustrates the differences between
the OO and Semantic Web models. Consider a person John,
who is both a student and a chess player. Suppose that
we want to write an application which uses the informa-
tion about John and other people. While specifying the
fact that an individual is a member of several classes is
straightforward in RDF, in OO (for example in Java) a
programmer must create a class StudentChessPlayer that
imlements interfaces Student and ChessPlayer. In OO, a
new class must be created for representing combination of
classes. This leads to creating unnatural combinations, e.g.
StudentChessPlayerParentDriver. This complicates the ap-
plication by requiring maintainence of multiple classes. In
the example of John, the problem becomes more evident
once John goes to a summer internship and becomes a mem-
ber of a new class - Employee. Adding class membership to
existing individuals is also straightforward in RDF, however
there is no way to state in Java that the class of the ob-
ject John has changed to StudentChessPlayerEmployee. As

a continuation of our example, consider the case where a
software application discovers an additional fact about the
world, for example that chess players have rating. Dynami-
cally adding a property hasRating to an existing class Chess-
Player is straightforward in the Semantic Web, while in Java
the definition of the class/interface ChessPlayer must be
changed offline and the class must be recompiled. (Some
programming languages, for example Ruby [8], allow adding
methods/fields dynamically.)

2.4 Persistent Programming Languages
In persistent programming languages [3], an object of any

type can be declared as persistent and its persistency is pro-
vided implicitly. Thus, the programmer is freed from explic-
itly loading or saving data.

The Orthogonal Persistence Hypothesis [2] states that: If
application developers are provided with a well-implemented
and well supported orthogonally persistent programming plat-
form, then a significant increase in developer productivity
will ensue and operational performance will be satisfactory.

3. PRINCIPLES AND DESIGN FEATURES
In order to solve the impedance mismatch problem be-

tween OO and Semantic Web, a programming language for
the Semantic Web should have one common data model - a
hybrid between the object-oriented model and RDF. In this
language, any object should be both a first class citizen of
the language and a first class citizen of the Semantic Web.

In particular, the following features should be common to
all the objects in the language:

• Every object should be identifiable by a URI, as any re-
source on the Semantic Web, and should be accessible by
a URI.

• There should be a possibility to attach an RDF property
to any object.

• Every class, including the RDF classes, should have meth-
ods that could be called on the instances of the class.
While this feature is the basic one of the OO languages,
the RDF resources have no methods. (The Procedural At-
tachment is mentioned as a useful feature in [18]). The
methods should have URIs, similar to the properties of
RDF and should be serializable in some form in RDF
format, similar to the stored procedures in DBMS. The
methods and the RDF properties should be accessible in
the identical form, using the same language notation.

• Every object could be a member of multiple classes and
could change its classes dynamically, as in the Semantic
Web. Message dispatch should be done as in the languages
with multiple inheritance. Moreover, since the methods
will also have URIs, it will be possible to call them ex-
plicitly by their URI. It will even be possible to call any
method by its URI on any object, regarding of its class.
Such behavior could be possible in interpreted languages -
if the called method accesses methods and fields (by their
names) that are defined in the class, the called method
could work OK. Otherwise, a runtime error would occur.

Once every object in the language has URI, the language
can be made orthogonally persistent [4]. The decision about
the object persistence can be made based on the object’s

www.manaraa.com

URI. In particular, a decision about where the data repre-
senting the object resides should be made based on the URI,
for example by using some pattern matching on the object’s
URI. The decision logic should be separated from the pro-
gram. This way the programmers could manipulate the data
using the URIs only and they could be relieved from the lo-
cation details of the data. The program will be written as if
it works with the whole World Wide Web of data, while the
boundaries of this virtual world would be defined by some
mapping between URIs and data sources. The data sources
and the mapping could be changed without changing any-
thing in the application logic. In addition, the program will
be written as if all the data in its virtual world exists in
RDF, while in reality the data from different data sources
in different data models/formats will be mapped on the fly
to RDF.

According to [4], a beneficial design feature of a persistent
programming language is persistence independence — the
code should work in the same way both with persistent and
transient data, and should not change if persistence of the
data changes. We would add to the definition of [4] that the
code should also not depend on where the persistent data
comes from/is written to.

The fact that every object and every method has URIs
enables running SPARQL queries on all the objects of the
language, both the in-memory objects and the ones repre-
senting persistent data. This is similar to the LINQ tech-
nology [10] that enables running SQL-like queries on the
native objects and arrays of a programming language. The
fact that SPARQL queries can be run on all the objects in
the language makes all the objects “equal citizens” in this
aspect and is in agreement with the persistence indepen-
dence property. It is also beneficial that the queries would
be language-integrated (first-class citizens of the language),
as in the LINQ technology.

Logical inference about the objects must be configurable
into the language environment, since it is one of the im-
portant features of the Semantic Web. That means that
once a Semantic Web reasoner is “plugged” into the lan-
guage environment, the language operations should be exe-
cuted considering the inferred information. To illustrate the
power of the inference, consider the following example. In
RDFS, the range is a constraint on the class of the object
part of the subject-predicate-object property. A property can
also be declared as being sub-property of another property,
for example, hasBrother and hasSister can be declared as
sub-properties (IS-A) of a property hasSibling. Suppose we
have a property hasSister, which has a range of Female and
is a sub-property of a symmetric and transitive property
hasSibling. From the following statement of the language:
John.hasSister = Mary, the language environment can infer
that Mary is a Female, she is a sibling of John and John is
a sibling of Mary (due to the fact that hasSibling is sym-
metric). A later query of the John.hasSibling property will
return Mary as a sibling. From the additional statement:
Mary.hasSister = Alice, the language environment can in-
fer automatically that Alice is also a sibling of John (since
hasSibling property is transitive).

4. IMPLEMENTATION
To provide an illustration of programming in a language,

designed according to the principles specified in the pre-
vious section, we implemented an extension to the Ruby

programming language [8], namely Ruby on Semantic Web.
We decided not to create a new programming language from
scratch but to graft the desired features on an existing OO
programming language. Our implementation adds to Ruby
an approximation of the aforementioned desired features.
We built our prototype on top of AcitveRDF1 — a library
for manipulating RDF data. We used implementation ideas
from [11]. In addition, we plan to change an existing SPARQL
query engine to enable method calling in SPARQL queries,
in order to comply with the design demand of adding meth-
ods to RDF.

4.1 Ruby Programming Language
The Ruby programming language is a dynamic, inter-

preted programming language with high meta-programming
capabilities. In particular, a Ruby class may be written in
several places and the methods can be dynamically added,
removed, renamed (via alias mechanism) in any place in the
code. The language environment provides “hook methods”
for different language events. For example, there are hooks
that are called when a new method is added or a missing
method is called. The missing method hook, for example,
allows the programmer to extend the original method invo-
cation mechanism of the language. In addition, the flexible
syntax of Ruby, for example the fact that the parenthesis
after the method call are optional, makes Ruby a very pow-
erful language for defining new Domain Specific Languages
on top of it.

4.2 Prototype
In our prototype, we had to reconcile between the origi-

nal objects of Ruby and the Semantic Web resources. The
solution we chose is as follows:

• We added URIs to the original objects of Ruby. The URIs
for the original objects of Ruby are generated automati-
cally by the language environment. Any object of Ruby
and any object of Semantic Web can be accessed by a
URI. Any object can have additional URIs assigned to it.

• We added URIs and URI namespaces to Ruby simulating
literals of the language.

• We added a “DNS” module that decides where each data
item must be loaded from/saved to, according to the URI
of the item and according to the preprogrammed rules.
The “DNS” module provides separation of the application
logic and the logic of where each object should reside.

• We enabled adding Ruby methods to the Semantic Web
resources.

• We enabled adding RDF properties to the Ruby objects.

As a result of having RDF properties attached, any object
can be a member of multiple Semantic Web classes (in addi-
tion to being a member of some native Ruby class). Method
dispatch of Ruby was changed (by aliasing all the methods)
to consider the methods in all the classes (the native one of
Ruby and the Semantic Web classes). In case a method is
found in several classes of the object that are not subclasses
of one another, an exception is thrown during the runtime.

Additional features that were implemented:

1http://www.activerdf.org/

www.manaraa.com

Relational

DB1Documents
Relational

DB2
RDF Store Non-relational

DB

Adapter
AdapterAdapterAdapter

Ruby on Semantic Web

“DNS module”
AcitveRDF Federation Manager

AcitveRDF Query Engine

Application

Ruby on Semantic Web extension

In-Memory RDF

Store of transient

objects

Semantic

Web

Reasoners

Figure 1: The architecture of Ruby on Semantic
Web

• Embedding of SPARQL and SPARQL/Update queries in
Ruby, using the original syntax of Ruby

• All the objects in our prototype, both the native Ruby
objects and Semantic Web resources, can participate in
SPARQL queries, with inference enabled (by plugging in
a Semantic Web reasoner).

• The values of the properties can be retrieved and updated
via SPARQL or SPARQL/UPDATE, or by applying “.”
(dot) and “=”operators of Ruby, similarly to method calls
and assignments.

4.3 Architecture
The architecure of Ruby on Semantic Web is depicted in
Figure 1. The Ruby on Semantic Web is built on top
of the ActiveRDF architecture [11]. The parts that we
added appear hatched.
In the figure, the data in the enterprise reside in several
data sources - in documents, in two relational databases,
in an RDF Store and in some non-relational database.
There are adapters for transforming SPARQL queries into
the queries specific for each data source, for example into
SQL in case of a relational database. The adapters pro-
vide virtual RDF views on all the data in the enterprise.
There is no adapter the RDF Store, since it contains the
data already in the RDF format.
The adapters are connected to the ActiveRDF Federation
Manager - the layer that is responsible for distributing
queries among multiple sources and aggregating the re-
sults. The arrows are bidirectional meaning that both
querying and updating of data sources is enabled. We
added a “DNS” module - the module that maps URIs of
the objects to data sources in order to determine which
data source the new data should be written to. An ad-
ditional data source — an in-memory RDF store is used
for representing information about the objects during the
runtime, in RDF. This data source is used for running
queries over the original objects of Ruby (the queries about
the resources of the Semantic Web run on the regular data
sources of the enterprise).
The Semantic Web reasoners can be plugged to the in-
memory RDF store and to the adapters of other data
sources in order to enable logical inference over the data.
The Ruby on Semantic Web uses ActiveRDF Query En-
gine engine for running queries. The Ruby on the Seman-
tic Web adds information about every new object to the
in-memory RDF store in order to enable running SPARQL

queries on the Ruby objects. Once an object is garbage-
collected, our extension removes the information about
the collected object from the store.
The application that runs on top of Ruby on Semantic
Web is unaware of all the layers beneath the Ruby on
Semantic Web. The application works with URIs and
is unaware about where the data resides, what are the
formats of the data and which data items are stored and
which are inferred by the reasoners. The application can
access any object by URI and can run SPARQL queries
on all the objects.

5. FUTURE WORK
Future work includes developing optimization techniques
for the proposed programming language, such as caching,
materialized views etc. Another question could be how to
add to the language advanced persistence features such as
persistence of the program state and of local variables.

6. REFERENCES
[1] R. Agrawal et al. The Claremont report on database

research. SIGMOD Record (ACM Special Interest Group on
Management of Data), 37(3):9–19, Sept. 2008.

[2] M. Atkinson. Persistence and java - a balancing act. In
Objects and Databases, volume 1944 of Lecture Notes in
Computer Science, pages 1–31. Springer, 2001.

[3] M. Atkinson et al. The Object-Oriented Database System
manifesto. In Proceedings of the 1st Intl. Conf. on
Deductive and Object-Oriented Databases. Kyoto, Japan,
Dec. 1989.

[4] M. P. Atkinson et al. An orthogonally persistent java.
SIGMOD Rec., 25(4):68–75, 1996.

[5] S. Bechhofer et al. OWL Web Ontology Language reference.
Recommendation, W3C, Feb. 2004.
http://www.w3.org/TR/2004/REC-owl-ref-20040210/.

[6] T. Berners-Lee, J. A. Hendler, and O. Lassila. The semantic
web. Scientific American, 284(5):34–43, May 2001.

[7] R. Dieng-Kuntz. Corporate Semantic Webs. Encyclopaedia
of Knowledge Management, D. Schwartz ed, Idea
Publishing Group, 2005.

[8] D. Flanagan and Y. Matsumoto. The Ruby Programming
Language. O’Reilly, Cambridge, 2008.

[9] A. Y. Halevy et al. Enterprise Information Integration:
successes, challenges and controversies. In SIGMOD ’05,
pages 778–787, New York, NY, USA, 2005.

[10] E. Meijer, B. Beckman, and G. Bierman. LINQ: Reconciling
object, relations and XML in the .NET framework. In
S. Vansummeren, editor, PODS 2006, page 706, Chicago,
Illinois, June 2006.

[11] E. Oren et al. ActiveRDF: Object-Oriented Semantic Web
Programming. In WWW ’07, pages 817–824, New York, NY,
USA, 2007.

[12] RDF Core Working Group. RDF vocabulary description
language 1.0: RDF schema. Recommendation, W3C, Feb.
2004. http://www.w3.org/TR/rdf-schema/.

[13] RDF Core Working Group. Resource description framework
(RDF): Concepts and abstract syntax. Recommendation,
W3C, Feb. 2004.
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/.

[14] RDF Data Access Working Group. SPARQL query language
for RDF, Jan. 2008. http://www.w3.org/TR/2008/REC-rdf-
sparql-query-20080115.

[15] A. Seaborne et al. SPARQL Update. A language for
updating RDF graphs. Member submission, W3C, July 2008.
http://www.w3.org/Submission/SPARQL-Update/.

[16] Semantic Web Best Practices and Deployment Working
Group. A Semantic Web primer for Object-Oriented software
developers. Working group note, W3C, Mar. 2006.
http://www.w3.org/TR/sw-oosd-primer/.

[17] J. D. Ullman and J. Widom. A First Course in Database
Systems. Prentice-Hall, 2008.

[18] Web Ontology Working Group. OWL Web Ontology
Language Use Cases and Requirements. Technical report,
W3C, Feb. 2004. http://www.w3.org/TR/webont-req/.

www.manaraa.com

APPENDIX

Code Examples
1. Defining a namespace family for the URI prefix ’http://www.example.org/family#’

namespace ’http://www.example.org/family#’, :family

2. Retrieving/updating properties:
The following code retrieves the values of family::hasSalary property of resources family::John and family::Jane and
updates the property family::commonIncome of the resource family::DoeFamily. The namespace family is registered to
designate the prefix
http://www.example.org/family#, as in XML. The double colon is used according to the syntax of Ruby, in contrast to
the namespace syntax of XML and some Semantic Web representations.

namespace ’http://www.example.org/family#’, :family

family::Doe.family::commonIncome = family::John.family::hasSalary + family::Jane.family::hasSalary

After the code is executed, a triple (family::Doe, family::commonIncome, <the calculated encome>) is added to the data
source, according to the rules in the “DNS”’ module regarding the family namespace.
For comparison, the following code of ActiveRDF [11] accomplishes the same task:

Namespace.register :family, ’http://www.example.org/family#’

john = RDFS::Resource.new ’http://www.example.com/family#John’

jane = RDFS::Resource.new ’http://www.example.com/family#Jane’

doe = RDFS::Resource.new ’http://www.example.com/family#DoeFamily’

doe.family::commonIncome = john.family::hasSalary + jane.family::hasSalary

In the code of ActiveRDF, the objects representing the Semantic Web resources must be explicitly created before accessing
their properties.

3. Using values of properties of RDF subjects in operations of Ruby:

commonIncome = family::John.family::hasSalary + family::Jane.family::hasSalary

theGroomAndBrideParents = family::John.family::hasParent + family::Jane.family::hasParent

The values of the properties are considered as scalar for a functional property (a property that can have only one value
- the example above assumes that a person has only one salary). Otherwise, the values of the properties are considered
arrays (as the hasParent property in the example above).
In the example above the integer addition is performed on scalar values of hasSalary property of family::John and
family::Jane and their common income (an integer) is calculated. As opposed to handling a functional property, the
expression family::John.family::hasParent designates an array of the values of the property family::hasParent. The Ruby
addition of arrays operation is applied to the arrays of the values, producing an array containing the objects representing
the parents of John and Mary.

4. Setting a property family::hasSister of family::John to be family::Mary

family::John.family::hasSister = family::Mary

this statement deletes all triples with subject family::John and predicate family::hasSister from the data target specified by
the “DNS”, according to the URI of the subject or the predicate. After deleting the previous values, a triple (family::John,
family::hasSister, family::Mary) is added to the same data target.

5. Adding new values to the property family::hasSister of family::John

family::John.family::hasSister +=[family::Mary, family::Alice]

here the Ruby’s addition of arrays is used (the property family::hasSister is not functional , so it can have multiple values
- the array semantics is applied)

6. Using values of properties of RDF subjects in the Ruby control flow:

example::company.example::hasEmployee.each { |employee|

if(employee.family::hasSalary < 1000) then

employee.family::hasSalary += 100

end

}

The code above iterates over all the employees of example::company and increases the salary of each employee by 100, if
the employee’s salary is less than 1000. Here a Ruby iterating construct (each method with a block) is used.

7. Running SPARQL queries embedded in Ruby:
Consider the following query in SPARQL (we omitted the definition of dbpo, dbpp and dbpr namespaces):

select ?film ?budget ?actor

where {

?film dbpo:starring dbpr:Bruce_Willis;

dbpo:budget ?budget;

dbpo:starring ?actor .

?actor dbpp:birthPlace dbpr:United_Kingdom

}

www.manaraa.com

This query returns all the films, which has as stars Bruce Willis and some other actor who was born in the United
Kingdom. The films, their budgets and the actors born in the UK are returned by the query.
The query can be programmed in our extension of Ruby in the following way:

results =

select q::film q::budget q::actor where {

q::film dbpo::starring dbpr::Bruce_Willis;

dbpo::budget q::budget;

dbpo::starring q::actor .

q::actor dbpp::birthPlace dbpr::United_Kingdom

}

In the Ruby version a prefix “q::” is used instead of the “?” sign of SPARQL, in order to comply with the parsing rules
of Ruby.
For comparison, the following code of ActiveRDF [11] accomplishes the same task:

results = Query.new.select(:film,:budget,:actor).

where(:film, DBPO::starring, DBPR::Bruce_Willis).

where(:film, DBPO::budget,:budget).

where(:film, DBPO::starring,:actor).

where(:actor, DBPP::birthPlace, DBPR::United_Kingdom).execute

In the code of ActiveRDF, the query is created by calling select, where and execute methods of a Query class, while in
our code the query is written almost AS-IS, without the need to explicitly call any methods.

8. The SPARQL queries can be further integrated in other Ruby constructs, for example in iterations:

totalBudget = (select q::film where {

q::film dbpo::starring dbpr::Bruce_Willis;

dbpo::starring q::actor .

q::actor dbpp::birthPlace dbpr::United_Kingdom

}) .inject (0) { |sum, film| sum += film.dbpp::budget }

Here the inject method of Ruby is used for iteration over all the films in which Bruce Willis and some actor born in the
UK starred, and for calculation of their total budget

9. Reasoning over the properties :

family::john.family::hasSister = family::mary

print family::john.family::hasSibling # prints family::mary since hasSister is a

subproperty of hasSibling

print family::mary.family::hasSibling # prints family::john, since hasSibling is a symmetric property

print family::mary.rdf::type # prints Female as one of the types, since the range of hasSister is Female

family::mary.family::hasSister = family::alice

print family::john.family::hasSibling # now both family::mary and family::alice are printed as siblings

of family::john, since hasSiblig is a transitive property

10. The inference of the types and changing types dynamically:

family::John.family::hasSalary = 100

print family::john.rdf::type # assuming the domain of the property hasSalary is Employee,

one of the printed types of family::john is Employee

family::John.family::studiesAt = [technion::cs]

print family::john.rdf::type # assuming the domain of the property studiesAt is Student, both Employee

and Student types are printed

family::John.family::hasSalary = nil # all the values of the property hasSalary are removed

print family::john.rdf::type # now family::john is not Employee anymore, since he has no value for

hasSalary property (assuming there are no other evidence that he is

an Employee), he is only a Student

family::John.family::studiesAt = [] # all the values of the property studiesAt are removed

print family::john.rdf::type # now family::john ceases to be a Student,

since he has no value forstudiesAt property (assuming

there are no other evidence that he is a Student)

11. Defining persistent methods for persistent classes and demonstrating the message dispatch:

class example::Student

def printTitle

print "I am a Student"

end

end

Here a persistent method printTitle is added to the persistent class example::Student. The method is serialized in RDF
in some data target, according to the “DNS”. Both the message “printTitle” and the method printTitle in the class
family::Student are represented in RDF and have URIs assigned to them. The method can be called either by its message

www.manaraa.com

name as usual - “printTitle”, or by the URI of the message or by the URI of the method. In the case of a call by the
URI of the method the dispatch is made statically - the specified method is called. Consider the following hierarchy -
suppose there are classes Person, Employee, Student and Manager. Employee and Student are sub-classes of Person and
Manager is a sub-class of Employee. Suppose that each class has a “printTitle” method that prints “I am “ + the class
name string. The following code will produce the output as described (considering the type inference as in the previous
example):

suppose the initial type of family::john is Person

family::john.printTitle # "I am Person"

family::john.family::hasSalary = 100 # now family::john is Employee

family::john.printTitle # "I am Employee"

family::john.example::isManagerOf = [family::bob] # now the type of family::john is Manager, assuming

the domain of example::isManagerOf

property is Manager

family::john.printTitle # "I am Manager"

family::john.family::studiesAt = [technion::cs]

family::john.printTitle # an exception is thrown - two candidate methods exists -

one in the Manager and

another one in the Student class

calling the specific method by its URI, "I am a student" is printed

family::john.URI("’http://www.example.org/family#Student.Methods.printTitle’)

family::john.printTitle # "I am Student"

family::john.family::studiesAt = [] # family::john ceases to be Student

family::john.example::isManagerOf = [] # family::john ceases to be Manager

family::john.printTitle # "I am Employee"

family::john.family::hasSalary = nil # family::john ceases to be Employee

family::john.printTitle # "I am Person"

12. Running SPARQL queries on the original Ruby objects:

class ChessPlayer # an original Ruby class

...

end

the following query returns all the Ruby objects of type ChessPlayer

players = select q::player where {

q::player rosw::rubyType ChessPlayer

}

13. Linking between native Ruby objects and Semantic Web individuals, and querying about them:

player = ChessPlayer.new # create a native object of Ruby

family::john.family::hasSister += [player] # the native object player is linked to

the individual family::john via

the family::hasSister property

The following query returns all the sisters of family::john that are also ChessPlayers

sisterChessPlayers = select q::sister where {

family::john family::hasSister q::sister .

q::sister rosw::rubyType ChessPlayer

}

14. Assigning a URI to a native object of Ruby

player = ChessPlayer.new

...

example::abc = player # assigning a URI example::abc to the object pointed by player

player.play() # calling the play() method of the player

example::abc.play() # calling the same method of the same object,

using its new URI

...

another run of another program

example::abc.play() # calling the play() method of

the previously serialized object player

www.manaraa.com

the object is implicitly deserialized

After the assignment above, the object, pointed by the variable player will have an additional URI - example::abc. The
object will be serialized in a data target according to the rules defined in the “DNS” module for the objects of the example
namespace. The methods of the object could be called later (during the current run of the program) or even in the later
runs by using the new URI. During the later runs of the program, the object will be trasparently deserialized and its
methods could be called as usual. The example shows implicit serialization/deserialization

